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Localized light wave states in the photonic band gaps in two-dimensional octagonal and decagonal quasip-
eriodic dielectric media are investigated by considering the corresponding approximant structures. The struc-
ture effects on the local resonances at high-symmetry centers are studied in terms of the interscatterer corre-
lation and the coupling strength between neighbor scatterers is analyzed as a function of the local symmetry
order, the structure dielectric contrast, and the scatterer size. It is shown that an interscatterer distance threshold
can be defined for the light localization regime. The threshold is determined by the geometrical and dielectric
properties of the scatterers and independent of the local symmetry. It is thus likely a universal parameter for
light localization in dielectric structures containing high-symmetry centers.
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I. INTRODUCTION

Light exhibits different behaviors depending on the me-
dium through which it propagates. It is classically known
that light waves are localized in the sense of Anderson, sub-
ject to destructive interferences, in disordered strongly scat-
tering dielectric structures.1–4 Such structures can lead, be-
sides, to photonic band-gap opening.5 In perfectly ordered
dielectric structures, such as simple periodic photonic struc-
tures, light waves are described by extended Bloch states,
and photonic band gaps can be obtained as well.6 Quasiperi-
odic �QP� structures, being nonperiodic but yet
deterministic,7 differ fundamentally from the above struc-
tures. Following the pioneer works of Refs 5 and 6 on ran-
dom and simple periodic structures, much interest has been
aroused on various QP structures in dielectric materials. Con-
cerning light propagation in one-dimensional �1D� QP di-
electric structures, attentions are mainly focused on the lack
of periodicity and the structure self-similarity, and photonic
band-gap opening and light localization are shown to occur
in such structures.8,9 Higher dimensional QP structures differ
from the 1D ones, as well as from the simple periodic and
random ones, by their high degree rotational symmetries. In
the two-dimensional case, QP structures are characterized by
octagonal, decagonal, or dodecagonal rotational symmetries
and such dielectric structures display many particular fea-
tures. It has been shown that an octagonal dielectric structure
exhibits flat frequency bands and near isotropic band gaps in
all the directions of the space,10 that have potential applica-
tions on photonics. These structures present also fundamental
interests, such as relations between photonic band gaps and
the QP structure order, as well as structure effects on the
light wave states at different structure scales. The latter is-
sues are raised, in particular, by the report that light localiza-
tion occurs in the dodecagonal structure.11 As a matter of
fact, many studies on these structures have been conducted,
concerning, noticeably, photonic band-gap properties,10,12–19

light localization in octagonal,20 decagonal,18 and
dodecagonal11,21 structures, defect-related localization and
transmission,22,23 laser effect,24,25 as well as light
emission.26,27 Indeed, these complex structures provide in-
structive examples for investigating light wave behaviors in

complex dielectric media, in relation with structure environ-
ments at various scales, especially the effects of global order
and local configurations on photonic gap opening and light
localization. As far as the latter is concerned, we have shown
that, differently from the conclusion of Ref. 11, light local-
ization occurs in octagonal and decagonal QP dielectric
structures at high-symmetry local centers.18,20 Such localiza-
tion effect is due to local resonance between neighbor scat-
terers in Mie resonant mode, favored by high degree rota-
tional symmetries. Moreover, unlike the classical cases,
introduction of structure disorder leads to dislocalization
effect.20

In this work we investigate the localized light wave states
in the octagonal and the decagonal dielectric structures, and,
in particular, the correlation between scatterers in Mie reso-
nant mode, in order to understand the consequence of the
geometrical and dielectric parameters on the localization ef-
fect. The comparison between the octagonal and the decago-
nal structures will further allow us to probe the effects of the
local structure order on the light wave states in these com-
plex media, especially in the localization regime, and to de-
termine the fundamental parameters that govern the inter-
scatterer resonance.

II. RESONANCE AT HIGH-SYMMETRY CENTERS

As compared to periodic structures, QP dielectric struc-
tures display higher rotational symmetry orders, thus favor-
ing the formation of resonant states on local structure pat-
terns displaying the maximum rotational symmetry of the
quasilattice. As a matter of fact, such local centers corre-
spond, for the octagonal and decagonal quasilattices, to oc-
tagonal and decagonal rings formed by equidistant dielectric
scatterers. In a nearest-neighbor approximation, the fre-
quency levels of all the resonant states formed on these rings
can easily be calculated.18,20 The coupling between neighbor
scatterers can be expressed by a coupling parameter g that
has units of frequency

g � −� d��������H���� − R� � , �1�

where ����� is the wave function on an individual scatterer, R
the interscatterer distance on the ring, and H the Hamil-
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tonian. The eigenfrequency for an individual scatterer, �̄0, is
just the Mie resonance frequency.18,20 Using the Hükel
theory,28 we obtain, for weak coupling, the eigenfrequency
levels for the resonant states on the octagonal ring

�̄ = �̄0 − g, �̄0 −
g
�2

, �̄0, �̄0 +
g
�2

, �̄0 + g . �2�

For s waves on the scatterers �the first Mie resonance mode�,
these resonant states are described, respectively, by the �1,
�5, �6, �7, and �3 representations under the D8 group.

For the decagonal ring, we have

�̄ = �̄0 − g, �̄0 −
�

2
g, �̄0 −

� − 1

2
g, �̄0 +

� − 1

2
g ,

�3�

�̄0 +
�

2
g, �̄0 + g

with the golden number �= �1+�5� /2. For s waves on the
scatterers, these resonant states are described, respectively,
by the �1, �5, �6, �7, �8, and �3 representations under the
D10 group.

�3 corresponds to the antibonding state for the two rings,
with the eigenfrequency level given by

�̄�3
= �̄0 + g . �4�

The eigenfrequency �̄�3
of the antibonding state provides

thus direct information on the coupling strength between
neighbor scatterers on the rings.

III. APPROXIMANT STRUCTURES

The octagonal and decagonal quasilattices exhibit, respec-
tively, global average eightfold and tenfold rotational sym-
metries, and long-range octagonal and decagonal bond-
orientational symmetries. We will consider here their
respective approximant structures that are periodic, thus al-
lowing exact resolution of Maxwell’s equations. These struc-
tures are also good candidates for studying local scale effects
since they locally reproduce the parent quasiperiodic struc-
ture patterns. The two approximant lattices studied here are
shown in Fig. 1.

These approximants are both formed by tiles with edge
length a. The octagonal approximant is constructed by
squares and rhombi with � /2 inner angle. It displays a
square unit cell containing 41 nodes, with a cell size of
a�3+2�2� and a node density of 1.21. The decagonal ap-
proximant is constructed by 2� /5 and � /5 rhombi. It dis-
plays a unit cell in the form of 2� /5 rhombus which contains
76 nodes. The unit cell is characterized by a width of a�5�3

and a height of a�5�5 /�1+�2, with a node density of 1.23.
These two structure can be described, respectively, as the 3/2
approximant of the octagonal QP lattice and the �8/5,13/8�
approximant of the decagonal QP lattice in a cut-and-
projection description. As a matter of fact, these two struc-
tures can be obtained, respectively, by approximating �2

with 3/2 in the octagonal QP lattice, and � with 8/5 and 13/8
along, respectively, the x and y axes in the decagonal QP
lattice, in the formalism of Refs. 29 and 30.

These two approximant structures display global average
pseudoeightfold and pseudotenfold rotational symmetries
and octagonal and decagonal bond-orientational symmetries.
They contain, respectively, eightfold and tenfold local cen-
ters �patterns P8 and P10 in Fig. 1� that are maximum sym-
metry centers for their respective parent QP lattices.

P8

Q8

P10

Q’10

Q’’10

(a)

(b)

x

y

FIG. 1. ��a�� The octagonal and ��b�� the decagonal approximant
lattices investigated in the present work. The unit cells are delimi-
tated by dashed lines. The two approximants contain, respectively,
octagonal �P8� and decagonal �P10� rings, as well as incomplete
rings �Q8, Q10� , and Q10� �.
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IV. LOCALIZATION IN THE BAND GAPS

A. Band structures

The approximant dielectric structures are formed by scat-
terers that are infinite high dielectric cylinders placed perpen-
dicular to the lattice plane at the lattice nodes in a vacuum
background. In order to illustrate the relation between the
resonant states and the photonic band structures, as well as
their dependence on the dielectric and geometrical param-
eters, we first discuss in detail the case of scatterers of di-
electric constant �=12 and radius r=0.25a. This configura-
tion leads to a filling rate of about 23.7% and 24.2% and an
average dielectric constant �̄ of about 3.61 and 3.66 for, re-
spectively, the octagonal and decagonal structures.

Maxwell’s equations are solved for TM polarization using
a plane-wave method. Well-defined photonic band gaps are
obtained. For simplicity we will limit the investigation to the
first �lowest� photonic band gaps and the inside light wave
states. Figure 2 displays a portion of the band diagrams
around the first photonic band gaps for these two structures.

Several flat bands, indicated by arrows and labeled from a
to g, are found inside the band gaps. These bands correspond
to localized states that are confined on particular local struc-
ture patterns, as shown by the corresponding spatial electric
field distributions in Fig. 3, where the field patterns are let-
tered following the band labeling in Fig. 2. As shown in our
previous works18,20 and further discussed below, these states
are resulted from resonances at local scales and therefore not
involved in the photonic band-gap opening. The identifica-
tion of these states as local modes allows a better estimation
of the gap parameters. We obtain for the two approximant
structures almost the same midgap frequency �̄gap�0.31,
and a relative gap width of 38% and 34%, respectively, for
the octagonal and decagonal structures.

The fact that these two structures display the same band-
gap position is quite natural. The midgap frequency is related

to a set of reciprocal vectors Kp that are determined by the
global structure order, as well as to the average dielectric
constant �̄, through the relation

�̄gap = �
cKp

��̄
. �5�

The reciprocal vectors Kp, on which the gaps are opened,
have their magnitudes inversely proportional to the average
distances between planes passing by the scatterer axes, that
have close values for the octagonal16 and the decagonal
structures.18 The parent QP dielectric structures should dis-
play similar gap positions as well since the reciprocal vectors
Kp differ little between the QP structures and the approxi-
mant ones.31 Besides, as mentioned above, these two struc-
tures have similar average dielectric constants, due to their
close node densities. So it is natural that they display similar
�̄gap. More important, as we will see below, the dependence
of the gap position on the average dielectric constant will
enable us to follow the evolution of the resonant states inside
the band gaps, and to investigate the coupling between scat-
ters as functions of the dielectric contrast and filling rate of
the structures.

B. Light localization

Now let us consider in more detail the localized states in
the photonic band gaps. The corresponding electric field pat-
terns are shown in Fig. 3, where �a� and �b� display the field
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FIG. 2. Band diagrams in the vicinity of the lowest photonic
band gaps for ��a�� the octagonal ��b�� the decagonal approximant
dielectric structures with scatterer radius r=0.25a and dielectric
constant �=12. Localized states inside the band gaps are labeled
from a to g.
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FIG. 3. �Color online� Electric field patterns for the localized
states inside the first photonic band gap of ��a� and �b�� the octago-
nal and ��c� to �g�� the decagonal approximant structures. The pat-
terns are lettered following the band labeling in Fig. 2. The “+” and
“−” signs indicate the field polarities.
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patterns corresponding to the two bands close to the low gap
edge of the octagonal structure while �c�–�g� depict those
corresponding to the five bands inside the gap of the decago-
nal structure. Indeed, the modes in �a�, �c�, �d�, and �e� are all
formed at maximum symmetry local centers, that are octago-
nal �P8 in Fig. 1�a�� and decagonal �P10 in Fig. 1�b�� rings.
The modes in �a� and �c� are described by the �3 represen-
tation under the D8 and D10 groups, and correspond to
s-wave antibonding states. The two modes in �d� and �e�, that
are orthogonal to each other and can both be described by the
�8 representation under D10, correspond to doubly degener-
ate partially antibonding states �see Sec. II�.

We note as well that the two approximants considered
here have the particularity of containing both local structure
patterns that can be viewed as incomplete rings. There is one
such pattern in the octagonal approximant that is an incom-
plete octagonal ring �pattern Q8 in Fig. 1�a�� while the de-
cagonal approximant contains two patterns that are incom-
plete decagonal rings �patterns Q10� and Q10� in Fig. 1�b��.
Resonant states, with more extended field distribution on the
scatterers, especially near the broken ends of the incomplete
rings, are formed as well on these patterns �Figs. 3�b�, 3�f�,
and 3�g��, with frequency levels lying below the antibonding
states for each structure �band b, f , and g, respectively, in
Fig. 2�.

Let us consider the �3 antibonding states on the octagonal
and decagonal rings. These states correspond to the fre-
quency levels �̄�3

�0.25 and 0.29��a /2�c�, respectively,
for the two rings. For s waves, the initial eigenmode on the
individual scatterers corresponds to the first Mie
resonance,18,20 that occurs, on an individual infinite cylinder
with dielectric constant �=12, for the size parameter x
=2�r /	0�0.30,32 with 	0 the incident wavelength in the
surrounding medium. This corresponds, for r=0.25a, to the
frequency �̄Mie= �̄0�0.19��a /2�c�. The coupling param-
eter g values can thus be estimated from Eq. �4�. We obtain
g�0.06 and 0.10��a /2�c� for, respectively, the octagonal
and the decagonal rings.

The localization is induced by interscatterer resonance. It
is thus interesting, for a better understanding of the localiza-
tion mechanism, to investigate the coupling between the
scatterers in the localized states. Below we probe the conse-
quences of the geometrical and dielectric parameters that de-
termine the correlation between the scatterers and thus influ-
ence the localization. We follow the coupling parameter
evolution as a function of both the dielectric constant � and
the radius r for the scatterers in the two structures. We will
show that it is possible to draw a threshold for the localiza-
tion regime that is determined by � and r.

As mentioned above, for a given lattice, the band-gap
position �midgap frequency� scales inversely with the square
root of the average dielectric constant ��̄ �Eq. �5��. It is
therefore inversely correlated with both the size r and the
dielectric constant � of the scatterers. The Mie resonance
frequency level, on the other hand, is inversely correlated
with the square root of the scatterer dielectric constant ��
and scales inversely with the scatter size r. So that the local-
ized states inside the band gaps will persist to lower filling
rate and dielectric contrast. This will allow us to study the
evolution of the coupling parameter g for decreasing � and r
in the dielectric approximant structures.

Several series of structures, constructed on the same oc-
tagonal and decagonal approximant lattices of Fig. 1 but with
different sizes and dielectric constants for the scatterers, are
considered. For simplicity, four of them will be discussed
here in detail, other configurations leading to analog results.
Two of these series are characterized by the geometrical or
dielectric parameters considered above, i.e., one with con-
stant scatterer radius r=0.25a and decreasing dielectric con-
stant �, the other with constant dielectric constant �=12 and
decreasing scatterer radius r. The other two series are char-
acterized by weaker geometrical and dielectric parameters:
one with constant r=0.18a and decreasing �; the other with
constant �=7 and decreasing r. Maxwell’s equations are
solved on these structures, and the coupling parameter g val-
ues are subsequently estimated from Eq. �4�. The g value
variations as a function of r and � for these structures are
displayed in Figs. 4�a� and 4�c�.

Figure 4 shows that g is stronger on the decagonal ring
than on the octagonal one for the same � and r. This is not
surprising. Indeed, the Mie state wave function ����� on in-
dividual scatterers decays with increasing distance �, thus the
g value is inversely related to the interscatterer distance R
�Eq. �1��. As a matter of fact, the interscatterer distance for
the decagonal ring �Rdec�0.618a� is about 20% shorter than
that for the octagonal ring �Roct�0.765a�, the interscatterer
coupling is thus stronger on the former. As mentioned in our
previous works,18,20 high local symmetry favors the forma-
tion of localized state by favoring the coupling between
neighbor scatterers. Here the difference in the coupling pa-
rameters between the octagonal and the decagonal rings fur-
ther illustrates this point. A direct consequence of the local
symmetry is the position of the localized state frequency
levels in the band gaps. The latter have similar positions and
widths for the octagonal and decagonal structures, therefore
the stronger coupling between scatterers on the decagonal
ring leads to deeper positions for the localized states in the
band gap, as shown in Fig. 2.

Moreover, g decreases both with decreasing � and r. This
is natural because, besides the dependence of the Hamil-
tonian H on the dielectric function, a weaker � for the scat-
terers leads to a weaker magnitude for the wave function
�����, and a weaker radius r leads to a more restricted spatial
distribution for �����. It is therefore not surprising that the
coupling parameter g decreases following either the dielec-
tric constant or the scatterer radius.

Finally, Fig. 4 shows that the coupling parameter g ap-
proaches zero for certain r and � values, that are, moreover,
larger for the octagonal ring than for the decagonal one. As a
matter of fact, for constant scatterer size r=0.25a, the cou-
pling parameter g approaches zero for ��4.7 and 3.9 for,
respectively, the octagonal and the decagonal rings; while for
a weaker scatterer size r=0.18a, g approaches zero for �
�7.5 and 5.5 for, respectively, the two rings �Fig. 4�a��.
Similarly, for constant dielectric constant �=12, g ap-
proaches zero for r�0.14a and 0.11a for, respectively, the
octagonal and decagonal rings while for a weaker dielectric
constant �=7, g approaches zero for r�0.19a and 0.15a for,
respectively, the two rings �Fig. 4�c��.

The coupling parameter g reflects the strength of interac-
tion between neighbor scatterers. The Mie resonance in-
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creases the interaction range of a dielectric scatterer with
light waves,32 leading to a correlation region larger than the
scatterer size. The correlation region is described by the scat-
tering cross section. A cylindrical scatterer of radius r has a
geometrical cross section per unit length of 2r, for a light
wave propagating perpendicularly to its axis. It yields, in
Mie resonance mode, a scattering cross section per unit
length Csca �Ref. 32� that is larger than 2r. The cross section
increase is usually described by the so-called scattering effi-
ciency Qsca=Csca /2r and an effective radius for the scatterer,
ref f, that characterizes the scatterer correlation region, can be
defined as

ref f =
1

2
Csca = Qscar . �6�

The effective radius ref f decreases with both � and r. It is
therefore instructive to look at the coupling parameter g
variation as a function of the scatterer effective radius ref f for
the two rings, in relation with their respective interscatterer
distance R. For this purpose, the g variations in Figs. 4�a�
and 4�c� are replotted, respectively, in �b� and �d�, as a func-

tion of the ratio between these two lengths, ref f /R, for the
first Mie resonance.

Figures 4�b� and 4�d� show that, for both the two rings, g
decreases with the effective radius ref f and approaches zero
when ref f becomes comparable to R in all the cases �r
=0.25a and 0.18a, and �=12 and 7�. For a direct compari-
son, the effective radius ref f values for g�0, as well as the
corresponding length ratios ref f /R, are listed in Table I. In-
deed, Fig. 4 illustrates clearly the dependence of the inter-
scatterer resonance on the scatterer effective radius. The
resonance is significant for large ref f. It decreases with de-
creasing ref f, before reaching zero when the effective radius
approaches the interscatterer distance R.

The light localization is associated with the interscatterer
resonance. It is thus interesting to compare the light wave
states for scatterer sizes and dielectric constants that lead to
ref f well above and below R. As a matter of fact, if we look
at the field distributions, we can see that, in the first case, the
light waves are predominately localized on the rings while in
the second case, extended wave states become non negli-
gible. This is illustrated by Fig. 5, where the electric field
magnitudes for bands a and c in Fig. 2, normalized to their
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FIG. 4. The coupling parameter g evolutions
on the octagonal and the decagonal rings, as a
function of ��a�� the scatterer dielectric constant �
and ��c�� the scatterer radius r, obtained using Eq.
�4�. The corresponding g variations plotted as a
function of the ratio between the scatterer effec-
tive radius ref f and the interscatterer distance R
are displayed, respectively, in �b� and �d�.

TABLE I. Scatterer radii r, dielectric constants �, effective radii ref f, and ref f /R ratios for the octagonal and decagonal rings for g�0.
The resonant state frequency levels, the corresponding vacuum half wavelengths, and the optical path lengths between neighbor scatterers are
also listed.

Scatterer
radius r�a�

Dielectric
constant �

Scatterer effective
radius ref f�a� ref f /R

Frequency
��a /2�c�

Half
wavelength 1

2	0�a�
Optical path
length 
�a�

Octagonal ring, R=0.765a 0.25 4.7 0.66 0.87 0.39 1.27 1.34

0.18 7.5 0.75 0.98 0.38 1.33 1.39

0.14 12 0.82 1.07 0.36 1.39 1.43

0.19 7 0.75 0.98 0.37 1.33 1.39

Decagonal Ring, R=0.618a 0.25 3.9 0.55 0.89 0.48 1.05 1.11

0.18 5.5 0.57 0.92 0.48 1.05 1.10

0.11 12 0.64 1.04 0.46 1.10 1.14

0.15 7 0.60 0.97 0.47 1.07 1.12
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maximum magnitude values, are displayed for several cylin-
der diameters and dielectric constants, in a slice passing
through the ring center in the two structures. It is obvious
that, for �=12 and r=0.25a, for which ref f �1.52a, the field
is predominantly concentrated on the scatterers on the two
rings, and, for dielectric constants and scatterer sizes for
which ref f �R �ref f �0.5a and 0.52a, and ref f �0.4a and
0.45a for the octagonal and the decagonal structures, respec-
tively�, the electrical field has significant distribution outside
the rings. So, in the later cases, the resonance on the rings is
no more the dominant effect and the light wave states can no
more be considered as localized on the rings.

This allows us to define a threshold for the localization
regime, in terms of the scatterer effective radius in the Mie
resonance mode,

R � ref f . �7�

The localization is a dominant effect for interscatterer dis-
tances R weaker than ref f. Otherwise the light wave states
display extended distributions. The threshold is determined
by the scatterer size and dielectric constant, and independent
of the ring symmetry.

V. DISCUSSION

The approximant dielectric structures with the resonant
light wave states inside the band gaps, provide a unique op-
portunity for the investigation of the light localization effects
on high-symmetry local centers. For both the octagonal and
decagonal structures, the coupling between scatterers on such
local centers is strong for the distance between scatterers
weaker than the scatterer effective radius, R�ref f, i.e., when
the scatterers are in the correlation region of their neighbors.
The correlation length is determined by the geometrical and
dielectric parameters of the scatterers, and independent of the
ring symmetry. This is not surprising if we consider that the
resonance concerns essentially the first neighbor scatterers. It
is thus principally determined by the characteristics of the
scatterers and the interscatterer distance. The threshold, ref f,
can thus be a universal parameter for the light localization in
dielectric structures containing high-symmetry centers.

This localization threshold can also be considered in
terms of the resonant state wavelength. In fact, for the anti-
bonding states, the field on neighbor scatters have opposite
polarities so neighbor scatterers should be separated by a half
wavelength 	 /2=R. This can be checked by comparing the
half wavelength in vacuum, 	0 /2, of the resonant states and
the optical path length between neighbor scatterers, 
=R
+2r���−1�. The values of 	0 /2 and 
 are also listed in Table
I, together with the resonant state frequency levels. We can
see that the relation 	0 /2�
 is verified in all the cases �the
slight differences are due to the fact that the field maximum
does not coincide exactly with the cylinder axis�. Therefore,
the ratio ref f /R is equivalent to 2ref f /	, and the threshold for
the localization regime �Eq. �7�� can be expressed in terms of
the half wavelength

	

2
� ref f . �8�

As far as the coupling parameter g value estimation is
concerned, for r and � values leading to a scatterer effective
radius ref f well below the interscatterer distance R, Eq. �4�
would lead to negative values for g. However, we should
keep in mind that, when applying Eq. �4� to the light wave
states such as a and c �Fig. 2� inside the band gaps, we are
implying that the light waves are essentially confined on the
high-symmetry local centers. In fact, as a tight-bonding
model, the Hükel theory can only be applied to the high-
symmetry local centers when the light waves are concen-
trated on the rings. For either weak r or weak � leading to
ref f �R, the light waves display extended distributions.
Therefore, the local resonance picture, as well as Eqs. �2�–�4�
are no more adequate to describe the light wave states, and
an extended wave state model should be used instead. Be-
sides, the slight discrepancies in the effective radius ref f val-
ues for g�0 in Table I can also be attributed to the weaken-
ing of the resonances on the rings, implying surrounding
scatterer contributions to g estimation using Eq. �4�.

Finally, it is worth discussing further the relation between
the approximants and their parent QP structures, in connec-
tion with the photonic band-gap opening and the localization
effect. As a matter of fact, it is well known that the approxi-
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FIG. 5. Normalized electric field distributions for the bands a
and c �Fig. 2�, in a slice passing through the ring center ��a�� along
an axis at 3� /4 for the octagonal approximant structure and ��b��
along an axis at 4� /5 for the decagonal one. The solid lines depict
the field distributions corresponding to r=0.25a and �=12�ref f

�1.52a� for the scatterers in both cases. The dashed lines depict
that corresponding to ��a�� �=3.5�ref f �0.5a� and ��b�� 3�ref f

�0.4a�. The dotted lines depict that corresponding to ��a�� r
=0.085a�ref f �0.52a� and ��b�� 0.075a�ref f �0.45a�. The vertical
dashed-dotted lines represent the cylindrical scatterer axes and
those of the scatterers on the rings are indicated by arrows.
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mants and the QP lattices are intimately related, and a rigor-
ous mathematical relation between them can be established.
Concerning the band-gap opening, the photonic band struc-
ture is determined by the Fourier spectrum of the dielectric
structure.16,18 And the Fourier spectrum of an approximant is
related to that of the parent QP structure by a linear shift
field, that decreases with increasing approximant
order.29,30,33,34 Therefore, it is possible to draw a direct cor-
respondence relation between the reciprocal vectors on
which the band gap is opened for the approximants and those
for the parent QP structures.

Indeed, the gap position for an approximant structure is
determined, through Eq. �5�, by a set reciprocal vectors Kp,
that are directly derived, through the shift field, from a set of
reciprocal vectors of the parent QP structure.16,18 The later
have their magnitude inversely proportional to the average
distance between the scatterer planes, stacked quasiperiodi-
cally along the corresponding directions. Pseudo-Brillouin
zones can consequently be defined upon these vectors for the
octagonal and decagonal QP structures, in the forms of regu-
lar octagon and decagon, respectively.16,18 For reciprocal
vectors corresponding to Fourier components of strong inten-
sity, which is precisely the case for these gap vectors, the
shifts are very weak.29,31 Indeed, in the present case, the
maximum gap-vector shifts, in magnitude, are about 0.5%
and 0.8%, when passing from the QP structures to their re-
spective parent approximants �the 3/2 octagonal and the �8/5,
13/8� decagonal approximants, respectively�.16,18 The differ-
ences in node density between these approximants and their
respective parent QP lattices being very weak as well �below
0.02%�, the QP dielectric structures will display similar band
gaps as their respective approximants studied in the present
work.

As far as the localization effect is concerned, the light
wave resonance occurs on maximum symmetry local centers
that are octagonal and decagonal rings, common to both the
approximants and their parent QP structures. As a matter of
fact, the approximants are of particular interest for the inves-

tigation of local structure effects since they locally reproduce
their parent QP structures,35 and thus contain local structure
patterns of the later.

Indeed, although the ring structures cannot be reproduced
in the lowest-order approximants due to their too small unit-
cell sizes,35 the approximants studied in the present work are
of sufficiently high orders to contain each a ring per unit cell.
As a matter of fact, they are the lowest-order approximants
that can reproduce such ring structures. Higher-order ap-
proximants reproduce QP structures on larger scales,35 with,
consequently, more ring structures per unit cell. However, as
the resonance effect is resulted from interactions on the ring-
size scale, without involving inter-ring interactions,20 the 3/2
octagonal and the �8/5, 13/8� decagonal approximants con-
stitute the simplest and representative model structures for
studying local resonance effect on the maximum symmetry
local centers.

VI. CONCLUSION

In summary, light wave states inside the photonic band
gaps of the octagonal and decagonal QP dielectric structures,
that contain maximum symmetry local centers, are studied
comparatively, by investigating the interscatterer correlations
on the same local centers in the approximant structures.
Structure effects on light wave resonances in and out of the
localization regime are analyzed. It is shown that the inter-
scatterer coupling strength varies with the local symmetry,
the scatterer size and dielectric constant, and that a threshold
for the localization regime can be defined in terms of the
relation between the interscatterer distance and the scatterer
effective size that determines the correlation range of the
scatterers in the Mie resonant mode. Moreover, although the
coupling strength varies with the local symmetry order, the
localization threshold, being determined by the first neighbor
interaction, remains independent of the local symmetry. It
can thus be a universal parameter for light localization in
dielectric structures containing high-symmetry centers.
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